Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dichlorido{2,6-bis[1-(2,4,6-trimethylphenylimino)ethyl]pyridine- $\kappa^3 N, N', N''$ }cadmium(II) acetonitrile solvate

Rui-Qing Fan,^{a,b}* Ping Wang,^b Yu-Lin Yang^b and Zhi-Wei Lv^a

^aInstitute of Opto-electronics, Harbin Institute of Technology, Harbin 150001, People's Republic of China, and ^bDepartment of Applied Chemistry, Harbin Institute of Technology, Harbin 150001, People's Republic of China Correspondence e-mail: fanruiqing@163.com

Received 25 August 2007; accepted 4 September 2007

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.007 Å; *R* factor = 0.042; w*R* factor = 0.091; data-to-parameter ratio = 17.8.

In the title compound, $[Cd(C_{27}H_{31}N_3)Cl_2]\cdot CH_3CN$, the coordination geometry around the five-coordinated Cd^{II} atom can be described as distorted trigonal–bipyramidal, formed by two Cl atoms, one pyridine N and two imine N atoms from the bis(iminoalkyl)pyridine ligand. The dihedral angles between the substituted phenyl rings and the plane formed by the three coordinated N atoms are 90.6 (1) and 86.0 (1)°. C–H···Cl hydrogen bonds link the molecules into a three-dimensional supramolecular network.

Related literature

For related literature, see: Fan *et al.* (2004); Tang & Vanslyke (1987); Wang (2001).

Experimental

Crystal data $[Cd(C_{27}H_{31}N_3)Cl_2] \cdot C_2H_3N$ $M_r = 621.90$ Monoclinic, $P2_1/n$ a = 14.545 (3) Å b = 15.074 (3) Å c = 14.758 (3) Å $\beta = 111.516$ (2)°

 $V = 3010.3 (11) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.93 \text{ mm}^{-1}$ T = 295 (2) K $0.42 \times 0.20 \times 0.18 \text{ mm}$

metal-organic compounds

 $R_{\rm int} = 0.086$

16698 measured reflections

5948 independent reflections

4046 reflections with $I > 2\sigma(I)$

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.697, T_{max} = 0.851$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$	334 parameters
$wR(F^2) = 0.091$	H-atom parameters constrained
S = 0.88	$\Delta \rho_{\rm max} = 0.69 \ {\rm e} \ {\rm \AA}^{-3}$
5948 reflections	$\Delta \rho_{\rm min} = -0.39 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Cd1-N2	2.306 (3)	Cd1-N3	2.416 (3)
Cd1-N1	2.410 (3)	Cd1-Cl1	2.4369 (11)
Cd1-Cl2	2.4097 (10)		
N2-Cd1-N1	69.50 (10)	Cl2-Cd1-N3	99.21 (7)
N2-Cd1-Cl2	126.50 (7)	N2-Cd1-Cl1	118.86 (7)
V1-Cd1-Cl2	102.89 (7)	N1-Cd1-Cl1	97.85 (7)
N2-Cd1-N3	68.88 (10)	Cl2-Cd1-Cl1	114.64 (4)
N1-Cd1-N3	138.28 (10)	N3-Cd1-Cl1	104.43 (7)

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C8 - H8C \cdots Cl1^{i}$ $C16 - H16A \cdots Cl2^{ii}$ $C16 - H16C \cdots Cl2$ $C29 - H29B \cdots Cl2^{iii}$ $C5 - H5 \cdots Cl1^{iii}$	0.96 0.96 0.96 0.96 0.93	2.66 2.84 2.80 2.81 2.74	3.614 (4) 3.681 (4) 3.680 (4) 3.721 (6) 3.622 (4)	172 146 153 159 158
Symmetry codes: $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{1}{2}.$	(i) $x + \frac{1}{2}, -y$	$+\frac{1}{2}, z+\frac{1}{2};$	(ii) $-x + 2, -y$, -z + 1; (iii)

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2001); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Development Programme for Outstanding Young Teachers in Harbin Institute of Technology (grant No. HITQNJS.2006.029), the Science Innovation Special Foundation of Harbin City in China (grant No. 2006RFQXG037), the Young Foundation of Heilongjiang Province in China (grant No. QC06C029), and the National Natural Science Foundation of China (grant Nos. 20771030 and 20671025).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2081).

References

Bruker (2001). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Fan, R.-Q., Zhu, D.-S., Mu, Y., Li, G.-H., Yang, Y.-L., Su, Q. & Feng, S. H. (2004). Eur. J. Inorg. Chem. pp. 4891–4897. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Tang, C. W. & Vanslyke, S. A. (1987). Appl. Phys. Lett. 51, 913–915.

Wang, S. N. (2001). Coord. Chem. Rev. 215, 79-98.

Acta Cryst. (2007). E63, m2501-m2502 [doi:10.1107/S1600536807043255]

Dichlorido{2,6-bis[1-(2,4,6-trimethylphenylimino)ethyl]pyridine- $\kappa^3 N, N', N''$ }cadmium(II) acetoni-trile solvate

R.-Q. Fan, P. Wang, Y.-L. Yang and Z.-W. Lv

Comment

Luminescent coordination compounds based on pyridine-type ligands have attracted intensive attention due to their potential applications in the areas of sensor technologies and electro-luminescent devices (Tang & Vanslyke, 1987; Wang, 2001). In order to explore potential luminescent complexes of this type, we have reported a series of cadmium complexes derived from bis(iminoalkyl)pyridine ligands (Fan *et al.*, 2004). We report here the crystal structure of the title compound, a new cadmium complex with 2,6-bis[1-(2,4,6-trimethylphenylimino)ethyl]pyridine ligand.

As shown in Fig. 1, the asymmetric unit of the title compound contains one independent complex molecule and a solvated acetonitrile molecule. The central Cd^{II} atom is five-coordinated in a distorted trigonal-bipyramidal geometry, defined by two Cl atoms, one pyridine N and two imine N atoms from the bis(iminoalkyl)pyridine ligand. The Cd—N bond lengths [2.306 (3)–2.416 (3) Å] (Table 1) fall into the range of observed values in the similar cadmium complexes (Fan *et al.*, 2004). The dihedral angles between the substituted phenyl rings and the plane formed by three coordinated N atoms are 90.6 (1)° and 86.0 (1)°, respectively.

In the crystal structure, weak intermolecular C—H···Cl hydrogen bonds (Table 2) play an important role to link the molecules into a three-dimensional supramolecular network (Fig.2).

Experimental

The title complex was synthesized according to the literature procedure (Fan *et al.*, 2004). To a solution of 2,6-diacetylpyridine (2.4 g, 14.7 mmol) in absolute methanol (50 ml) was added 2,4,6-trimethylaniline (6.2 ml, 44.1 mmol). After the addition of several drops of formic acid, the reaction mixture was refluxed for 24 h and then allowed to cool down to room temperature. The crude product precipitated as yellow powder. Pure 2,6-bis[1-(2,4,6-trimethylphenylimino)ethyl]pyridine was obtained in 83% yield (4.8 g). A mixture of this ligand (0.30 g, 0.75 mmol) and CdCl₂·2.5H₂O (0.17 g, 0.75 mmol) in acetonitrile was stirred at room temperature for 12 h. Evaporation of the solvent gave the crude product as a yellowish powder. Yellowish needle crystals suitable for X-ray diffraction were obtained upon recrystallization from acetonitrile/dichloromethane (2:1 ν/ν) (yield 84%, 0.39 g).

Refinement

H atoms were positioned geometrically and refined as riding, with C—H = 0.93Å (CH) and $U_{iso}(H) = 1.2U_{eq}(C)$, and with C—H = 0.96Å (CH₃) and $U_{iso}(H) = 1.5U_{eq}(C)$.

Figures

Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. Packing diagram of the title compound along the b axis. Hydrogen bonds are indicated by dashed lines.

Dichlorido{2,6-bis[1-(2,4,6-trimethylphenylimino)ethyl] pyridine-ĸ3 N,N',N''}cadmium(II) acetonitrile solvate

 $F_{000} = 1272$

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 1.7 - 26.1^{\circ}$

 $\mu = 0.93 \text{ mm}^{-1}$ T = 295 (2) K

Needle, yellow

 $0.42 \times 0.20 \times 0.18 \text{ mm}$

 $D_{\rm x} = 1.372 \text{ Mg m}^{-3}$ Mo *K* α radiation

Cell parameters from 6108 reflections

Crystal data $[Cd(C_{27}H_{31}N_{3})Cl_{2}]\cdot C_{2}H_{3}N$ $M_{r} = 621.90$ Monoclinic, $P2_{1}/n$ Hall symbol: -P 2yn a = 14.545 (3) Å b = 15.074 (3) Å c = 14.758 (3) Å $\beta = 111.516$ (2)° V = 3010.3 (11) Å³ Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer	5948 independent reflections
Radiation source: fine-focus sealed tube	4046 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.086$
T = 295(2) K	$\theta_{\text{max}} = 26.1^{\circ}$
φ and ω scans	$\theta_{\min} = 1.7^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -17 \rightarrow 17$
$T_{\min} = 0.697, T_{\max} = 0.851$	$k = -16 \rightarrow 18$
16698 measured reflections	$l = -18 \rightarrow 15$

Refinement

Refinement on F^2

Secondary atom site location: difference Fourier map

Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.042$	H-atom parameters constrained
$wR(F^2) = 0.091$	$w = 1/[\sigma^2(F_o^2) + (0.0303P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.88	$(\Delta/\sigma)_{\text{max}} = 0.009$
5948 reflections	$\Delta \rho_{\text{max}} = 0.69 \text{ e} \text{ Å}^{-3}$
334 parameters	$\Delta \rho_{\text{min}} = -0.39 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Cd1	0.749428 (18)	0.180077 (17)	0.306446 (18)	0.04833 (11)
C11	0.57035 (7)	0.16398 (7)	0.23566 (9)	0.0755 (3)
C12	0.84039 (7)	0.04834 (7)	0.29937 (8)	0.0713 (3)
N1	0.76671 (19)	0.18576 (18)	0.4751 (2)	0.0456 (7)
N2	0.81540 (19)	0.31434 (18)	0.3745 (2)	0.0466 (7)
N3	0.7892 (2)	0.2711 (2)	0.1911 (2)	0.0529 (7)
N4	0.6107 (4)	0.4175 (3)	0.5283 (5)	0.1161 (18)
C1	0.7983 (2)	0.2586 (2)	0.5210 (2)	0.0468 (9)
C2	0.8220 (2)	0.3328 (2)	0.4650 (3)	0.0475 (9)
C3	0.8523 (3)	0.4155 (3)	0.5056 (3)	0.0644 (11)
Н3	0.8580	0.4278	0.5692	0.077*
C4	0.8738 (3)	0.4796 (3)	0.4492 (3)	0.0695 (12)
H4	0.8911	0.5366	0.4736	0.083*
C5	0.8697 (3)	0.4589 (2)	0.3582 (3)	0.0645 (11)
Н5	0.8878	0.5006	0.3214	0.077*
C6	0.8381 (2)	0.3750 (2)	0.3204 (3)	0.0508 (9)
C7	0.8266 (3)	0.3479 (3)	0.2199 (3)	0.0547 (10)
C8	0.8127 (3)	0.2753 (3)	0.6248 (3)	0.0652 (11)
H8A	0.7982	0.2221	0.6529	0.098*
H8B	0.7692	0.3219	0.6284	0.098*
H8C	0.8800	0.2924	0.6601	0.098*
C9	0.8587 (3)	0.4115 (3)	0.1586 (3)	0.0799 (13)
H9A	0.8544	0.3829	0.0991	0.120*
H9B	0.9258	0.4294	0.1937	0.120*
Н9С	0.8166	0.4627	0.1440	0.120*
C10	0.7476 (2)	0.1111 (2)	0.5263 (2)	0.0453 (8)
C11	0.8242 (3)	0.0495 (3)	0.5670 (3)	0.0547 (10)
C12	0.8031 (3)	-0.0242 (3)	0.6125 (3)	0.0657 (11)
H12	0.8530	-0.0655	0.6407	0.079*
C13	0.7121 (3)	-0.0390 (3)	0.6178 (3)	0.0653 (11)
C14	0.6400 (3)	0.0233 (3)	0.5782 (3)	0.0611 (10)
H14	0.5783	0.0146	0.5824	0.073*
C15	0.6555 (3)	0.0993 (2)	0.5317 (3)	0.0525 (9)
C16	0.9252 (3)	0.0656 (3)	0.5663 (3)	0.0762 (13)

H16A	0.9659	0.0146	0.5920	0.114*
H16B	0.9537	0.1165	0.6057	0.114*
H16C	0.9208	0.0761	0.5007	0.114*
C17	0.6943 (4)	-0.1210 (3)	0.6687 (4)	0.1025 (17)
H17A	0.6443	-0.1087	0.6949	0.154*
H17B	0.7545	-0.1374	0.7206	0.154*
H17C	0.6730	-0.1689	0.6228	0.154*
C18	0.5753 (3)	0.1681 (3)	0.4925 (3)	0.0726 (12)
H18A	0.5961	0.2225	0.5278	0.109*
H18B	0.5160	0.1474	0.4998	0.109*
H18C	0.5628	0.1781	0.4247	0.109*
C19	0.7759 (3)	0.2367 (2)	0.0965 (3)	0.0545 (9)
C20	0.6847 (3)	0.2440 (3)	0.0224 (3)	0.0680 (11)
C21	0.6716 (4)	0.2024 (3)	-0.0655 (3)	0.0825 (14)
H21	0.6104	0.2065	-0.1160	0.099*
C22	0.7456 (5)	0.1553 (3)	-0.0807 (4)	0.0856 (15)
C23	0.8366 (4)	0.1519 (3)	-0.0054 (4)	0.0835 (14)
H23	0.8880	0.1216	-0.0150	0.100*
C24	0.8540 (3)	0.1918 (3)	0.0835 (3)	0.0681 (11)
C25	0.6026 (3)	0.2975 (3)	0.0350 (3)	0.0898 (15)
H25A	0.5823	0.2700	0.0833	0.135*
H25B	0.5475	0.3000	-0.0258	0.135*
H25C	0.6256	0.3565	0.0555	0.135*
C26	0.7284 (5)	0.1099 (4)	-0.1777 (4)	0.132 (2)
H26A	0.6675	0.0772	-0.1976	0.198*
H26B	0.7820	0.0701	-0.1707	0.198*
H26C	0.7247	0.1539	-0.2260	0.198*
C27	0.9545 (3)	0.1863 (3)	0.1635 (4)	0.0876 (15)
H27A	0.9981	0.1525	0.1412	0.131*
H27B	0.9488	0.1578	0.2194	0.131*
H27C	0.9807	0.2449	0.1808	0.131*
C28	0.5801 (5)	0.4177 (4)	0.4466 (6)	0.098 (2)
C29	0.5408 (5)	0.4164 (5)	0.3409 (5)	0.156 (3)
H29A	0.5294	0.3561	0.3185	0.234*
H29B	0.5874	0.4434	0.3172	0.234*
H29C	0.4797	0.4487	0.3171	0.234*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.05459 (18)	0.04431 (16)	0.04645 (17)	0.00312 (13)	0.01896 (13)	-0.00318 (12)
Cl1	0.0547 (6)	0.0804 (8)	0.0827 (8)	0.0069 (5)	0.0148 (5)	-0.0143 (6)
Cl2	0.0732 (7)	0.0640 (7)	0.0751 (8)	0.0229 (5)	0.0252 (6)	-0.0017 (5)
N1	0.0445 (16)	0.0469 (17)	0.0471 (18)	0.0001 (14)	0.0189 (14)	-0.0005 (14)
N2	0.0485 (17)	0.0431 (16)	0.0477 (19)	-0.0003 (14)	0.0169 (14)	-0.0012 (14)
N3	0.0654 (19)	0.053 (2)	0.0445 (19)	0.0105 (16)	0.0254 (15)	0.0009 (14)
N4	0.109 (4)	0.097 (4)	0.147 (5)	-0.001 (3)	0.052 (4)	0.015 (4)
C1	0.043 (2)	0.059 (2)	0.038 (2)	0.0008 (17)	0.0146 (16)	-0.0017 (17)

C2	0.046 (2)	0.050 (2)	0.044 (2)	-0.0054 (16)	0.0139 (17)	-0.0056 (17)
C3	0.078 (3)	0.061 (3)	0.054 (3)	-0.013 (2)	0.025 (2)	-0.014 (2)
C4	0.087 (3)	0.050 (2)	0.067 (3)	-0.016 (2)	0.023 (2)	-0.011 (2)
C5	0.079 (3)	0.046 (2)	0.070 (3)	-0.007 (2)	0.028 (2)	0.006 (2)
C6	0.055 (2)	0.048 (2)	0.052 (2)	0.0065 (18)	0.0226 (19)	0.0077 (18)
C7	0.059 (2)	0.052 (2)	0.057 (3)	0.0104 (19)	0.026 (2)	0.0110 (18)
C8	0.071 (3)	0.078 (3)	0.048 (2)	-0.013 (2)	0.023 (2)	-0.008 (2)
C9	0.120 (4)	0.062 (3)	0.073 (3)	-0.008 (3)	0.053 (3)	0.010(2)
C10	0.050 (2)	0.049 (2)	0.038 (2)	-0.0051 (17)	0.0179 (17)	-0.0026 (15)
C11	0.061 (2)	0.063 (3)	0.041 (2)	0.005 (2)	0.0196 (19)	0.0036 (18)
C12	0.085 (3)	0.062 (3)	0.046 (3)	0.014 (2)	0.019 (2)	0.0099 (19)
C13	0.086 (3)	0.065 (3)	0.048 (3)	-0.011 (2)	0.028 (2)	0.002 (2)
C14	0.072 (3)	0.067 (3)	0.054 (3)	-0.017 (2)	0.034 (2)	-0.008 (2)
C15	0.056 (2)	0.052 (2)	0.054 (2)	-0.0070 (19)	0.0249 (19)	-0.0075 (18)
C16	0.063 (3)	0.098 (4)	0.067 (3)	0.018 (2)	0.024 (2)	0.019 (2)
C17	0.134 (4)	0.084 (4)	0.095 (4)	-0.012 (3)	0.049 (3)	0.033 (3)
C18	0.060 (3)	0.073 (3)	0.094 (4)	0.001 (2)	0.040 (2)	-0.003 (2)
C19	0.072 (3)	0.056 (2)	0.043 (2)	0.011 (2)	0.031 (2)	0.0057 (18)
C20	0.087 (3)	0.064 (3)	0.054 (3)	0.013 (2)	0.027 (2)	0.006 (2)
C21	0.109 (4)	0.082 (3)	0.046 (3)	0.004 (3)	0.016 (3)	0.008 (2)
C22	0.139 (5)	0.069 (3)	0.061 (3)	0.011 (3)	0.051 (3)	-0.003 (2)
C23	0.123 (4)	0.072 (3)	0.079 (4)	0.026 (3)	0.065 (3)	0.008 (3)
C24	0.094 (3)	0.061 (3)	0.062 (3)	0.016 (2)	0.044 (3)	0.011 (2)
C25	0.094 (3)	0.106 (4)	0.065 (3)	0.036 (3)	0.024 (3)	0.011 (3)
C26	0.222 (7)	0.123 (5)	0.065 (4)	0.012 (4)	0.069 (4)	-0.024 (3)
C27	0.077 (3)	0.102 (4)	0.096 (4)	0.025 (3)	0.047 (3)	0.019 (3)
C28	0.093 (4)	0.072 (3)	0.144 (6)	0.005 (3)	0.060 (5)	0.023 (4)
C29	0.188 (7)	0.158 (7)	0.131 (7)	-0.002(5)	0.069 (5)	0.037 (5)

Geometric parameters (Å, °)

Cd1—N2	2.306 (3)	C14—C15	1.396 (5)
Cd1—N1	2.410 (3)	C14—H14	0.9300
Cd1—Cl2	2.4097 (10)	C15—C18	1.507 (5)
Cd1—N3	2.416 (3)	C16—H16A	0.9600
Cd1—Cl1	2.4369 (11)	C16—H16B	0.9600
N1—C1	1.284 (4)	C16—H16C	0.9600
N1—C10	1.438 (4)	C17—H17A	0.9600
N2—C6	1.332 (4)	С17—Н17В	0.9600
N2—C2	1.332 (4)	C17—H17C	0.9600
N3—C7	1.284 (4)	C18—H18A	0.9600
N3—C19	1.434 (4)	C18—H18B	0.9600
N4—C28	1.123 (7)	C18—H18C	0.9600
C1—C8	1.490 (5)	C19—C20	1.380 (5)
C1—C2	1.504 (5)	C19—C24	1.395 (5)
С2—С3	1.385 (5)	C20—C21	1.390 (6)
C3—C4	1.383 (5)	C20—C25	1.507 (5)
С3—Н3	0.9300	C21—C22	1.374 (6)
C4—C5	1.358 (5)	C21—H21	0.9300

C4—H4	0.9300	C22—C23	1.383 (6)
C5—C6	1.391 (5)	C22—C26	1.523 (6)
С5—Н5	0.9300	C23—C24	1.380 (6)
C6—C7	1.488 (5)	С23—Н23	0.9300
С7—С9	1.505 (5)	C24—C27	1.507 (6)
C8—H8A	0.9600	C25—H25A	0.9600
C8—H8B	0.9600	C25—H25B	0.9600
C8—H8C	0.9600	С25—Н25С	0.9600
С9—Н9А	0.9600	C26—H26A	0.9600
С9—Н9В	0.9600	C26—H26B	0.9600
С9—Н9С	0.9600	С26—Н26С	0.9600
C10—C15	1.382 (4)	C27—H27A	0.9600
C10-C11	1.405 (5)	С27—Н27В	0.9600
C11—C12	1.389 (5)	С27—Н27С	0.9600
C11—C16	1.493 (5)	C28—C29	1.451 (8)
C12—C13	1.373 (5)	С29—Н29А	0.9600
C12—H12	0.9300	С29—Н29В	0.9600
C13—C14	1.369 (5)	С29—Н29С	0.9600
C13—C17	1.517 (5)		
N2—Cd1—N1	69.50 (10)	C15—C14—H14	118.8
N2—Cd1—Cl2	126.50 (7)	C10-C15-C14	117.9 (4)
N1—Cd1—Cl2	102.89 (7)	C10-C15-C18	121.2 (3)
N2—Cd1—N3	68.88 (10)	C14—C15—C18	120.8 (3)
N1—Cd1—N3	138.28 (10)	C11—C16—H16A	109.5
Cl2—Cd1—N3	99.21 (7)	C11—C16—H16B	109.5
N2—Cd1—Cl1	118.86 (7)	H16A—C16—H16B	109.5
N1—Cd1—Cl1	97.85 (7)	C11—C16—H16C	109.5
Cl2—Cd1—Cl1	114.64 (4)	H16A—C16—H16C	109.5
N3—Cd1—Cl1	104.43 (7)	H16B—C16—H16C	109.5
C1—N1—C10	119.5 (3)	C13—C17—H17A	109.5
C1—N1—Cd1	117.2 (2)	С13—С17—Н17В	109.5
C10—N1—Cd1	123.2 (2)	H17A—C17—H17B	109.5
C6—N2—C2	121.0 (3)	C13—C17—H17C	109.5
C6—N2—Cd1	119.8 (2)	H17A—C17—H17C	109.5
C2—N2—Cd1	119.0 (2)	H17B—C17—H17C	109.5
C7—N3—C19	122.6 (3)	C15-C18-H18A	109.5
C7—N3—Cd1	117.4 (2)	C15—C18—H18B	109.5
C19—N3—Cd1	120.0 (2)	H18A—C18—H18B	109.5
N1—C1—C8	125.1 (3)	C15—C18—H18C	109.5
N1—C1—C2	117.1 (3)	H18A—C18—H18C	109.5
C8—C1—C2	117.8 (3)	H18B—C18—H18C	109.5
N2—C2—C3	121.1 (3)	C20—C19—C24	121.7 (4)
N2—C2—C1	116.7 (3)	C20—C19—N3	119.3 (3)
C3—C2—C1	122.1 (3)	C24—C19—N3	118.9 (3)
C4—C3—C2	118.3 (4)	C19—C20—C21	117.8 (4)
С4—С3—Н3	120.8	C19—C20—C25	121.3 (4)
С2—С3—Н3	120.8	C21—C20—C25	120.9 (4)
C5—C4—C3	119.8 (4)	C22—C21—C20	122.5 (4)
С5—С4—Н4	120.1	C22—C21—H21	118.7

С3—С4—Н4	120.1	C20-C21-H21	118.7
C4—C5—C6	119.5 (4)	C21—C22—C23	117.7 (4)
С4—С5—Н5	120.2	C21—C22—C26	121.1 (5)
С6—С5—Н5	120.2	C23—C22—C26	121.2 (5)
N2—C6—C5	120.1 (4)	C24—C23—C22	122.3 (4)
N2—C6—C7	116.6 (3)	C24—C23—H23	118.8
C5—C6—C7	123.3 (3)	С22—С23—Н23	118.8
N3—C7—C6	117.2 (3)	C23—C24—C19	117.9 (4)
N3—C7—C9	124.2 (4)	C23—C24—C27	120.5 (4)
С6—С7—С9	118.6 (4)	C19—C24—C27	121.6 (4)
С1—С8—Н8А	109.5	C20—C25—H25A	109.5
C1—C8—H8B	109.5	C20—C25—H25B	109.5
H8A—C8—H8B	109.5	H25A—C25—H25B	109.5
С1—С8—Н8С	109.5	C20—C25—H25C	109.5
Н8А—С8—Н8С	109.5	H25A—C25—H25C	109.5
H8B—C8—H8C	109.5	H25B—C25—H25C	109.5
С7—С9—Н9А	109.5	С22—С26—Н26А	109.5
С7—С9—Н9В	109.5	C22—C26—H26B	109.5
Н9А—С9—Н9В	109.5	H26A—C26—H26B	109.5
С7—С9—Н9С	109.5	С22—С26—Н26С	109.5
Н9А—С9—Н9С	109.5	H26A—C26—H26C	109.5
Н9В—С9—Н9С	109.5	H26B—C26—H26C	109.5
C15-C10-C11	121.6 (3)	С24—С27—Н27А	109.5
C15-C10-N1	120.6 (3)	С24—С27—Н27В	109.5
C11—C10—N1	117.8 (3)	H27A—C27—H27B	109.5
C12—C11—C10	117.1 (3)	С24—С27—Н27С	109.5
C12—C11—C16	121.7 (4)	H27A—C27—H27C	109.5
C10-C11-C16	121.2 (3)	H27B—C27—H27C	109.5
C13—C12—C11	123.0 (4)	N4—C28—C29	179.0 (7)
C13—C12—H12	118.5	С28—С29—Н29А	109.5
C11—C12—H12	118.5	С28—С29—Н29В	109.5
C14—C13—C12	117.9 (4)	H29A—C29—H29B	109.5
C14—C13—C17	121.9 (4)	С28—С29—Н29С	109.5
C12—C13—C17	120.2 (4)	H29A—C29—H29C	109.5
C13—C14—C15	122.5 (4)	H29B—C29—H29C	109.5
C13—C14—H14	118.8		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C8—H8C···Cl1 ⁱ	0.96	2.66	3.614 (4)	172
C16—H16A····Cl2 ⁱⁱ	0.96	2.84	3.681 (4)	146
C16—H16C…Cl2	0.96	2.80	3.680 (4)	153
C29—H29B···Cl2 ⁱⁱⁱ	0.96	2.81	3.721 (6)	159
C5—H5···Cl1 ⁱⁱⁱ	0.93	2.74	3.622 (4)	158
			-	

Symmetry codes: (i) x+1/2, -y+1/2, z+1/2; (ii) -x+2, -y, -z+1; (iii) -x+3/2, y+1/2, -z+1/2.

